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Abstract
We classify generalized Camassa–Holm-type equations which possess infinite
hierarchies of higher symmetries. We show that the obtained equations can be
treated as negative flows of integrable quasi-linear scalar evolution equations
of orders 2, 3 and 5. We present the corresponding Lax representations
or linearization transformations for these equations. Some of the obtained
equations seem to be new.

PACS numbers: 02.30.Ik, 02.30.Jr

1. Introduction

In recent years, there has been a growing interest in integrable non-evolutionary partial
differential equations of the form(
1 − D2

x

)
ut = F(u, ux, uxx, uxxx, . . .), u = u(x, t), Dx = ∂

∂x
. (1)

Here F is some function of u and its derivatives with respect to x. The most celebrated example
of this type of equations is the Camassa–Holm equation [1]:(

1 − D2
x

)
ut = 3uux − 2uxuxx − uuxxx.

Another equivalent form of the Camassa–Holm equation is

mt = 2mux + umx, m = u − uxx.

The Camassa–Holm equation is integrable by the inverse scattering transform. It possesses an
infinite hierarchy of local conservation laws, bi-Hamiltonian structure and other remarkable
properties of integrable equations. Despite its non-evolutionary form, the Camassa–Holm
equation possesses an infinite hierarchy of local higher symmetries—indeed this equation
can be viewed as an inverse flow of the equation uτ = Dx(u − uxx)

− 1
2 . Furthermore, the

Camassa–Holm equation can be reduced via a reciprocal transformation to the first negative
of the Korteweg–de Vries hierarchy (see also [2]). The Camassa–Holm equation possesses
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multi-phase peakon solutions (peaked soliton solutions with discontinuous derivatives at the
peaks).

Until 2002, the Camassa–Holm equation was the only known integrable example of type
(1), which possesses peakon solutions, when Degasperis and Procesi isolated another equation(

1 − D2
x

)
ut = 4uux − 3uxuxx − uuxxx,

or in a different form

mt = 3mux + umx, m = u − uxx,

which was also found to be integrable by the inverse scattering transform [5]. The Degasperis–
Procesi equation also possesses infinitely many conservation laws, bi-Hamiltonian structure,
etc. It also possesses an infinite hierarchy of local higher symmetries and can be seen as a
non-local symmetry of a local evolutionary equation uτ = (

4 − D2
x

)
Dx(u − uxx)

− 2
3 . In fact,

the Degasperis–Procesi equation can be reduced via a reciprocal transformation to the first
negative flow of the Kaup–Kupershmidt hierarchy [3].

One may ask the following questions: are there other integrable equations of the form (1),
and is it possible to classify all integrable equations of this type? The answer to both questions
is positive.

The first classification result of equations of type (1) was obtained in [6] using the
perturbative symmetry approach in the symbolic representation. In the symmetry approach the
existence of infinite hierarchies of higher symmetries is adopted as a definition of integrability.
The conditions of existence of higher symmetries are very restrictive and result in algorithmic
and efficient integrability test. In particular, the following result was proved in [6].

Theorem 1. If equation

mt = bmux + umx, m = u − uxx, b ∈ C\{0}
possesses an infinite hierarchy of (quasi-) local higher symmetries, then b = 2, 3.

Obviously, the case b = 2 corresponds to the Camassa–Holm equation, while b = 3 gives the
Degasperis–Procesi equation.

In this article, we extend the classification result of [6] and apply the perturbative symmetry
approach to isolate and classify more general class of integrable equations of the form (1). We
assume that function F on the right-hand side is a homogeneous differential polynomial over
C, quadratic or cubic in u and its x-derivatives. The obtained list comprises 28 equations (see
section 3) and some of these equations seem to be new to the best of our knowledge. The list
includes an equation of the form(

1 − D2
x

)
ut = u2uxxx + 3uuxuxx − 4u2ux.

Integrability and multipeakon solutions of this equation have been recently studied in [7, 11].
For all the obtained equations we present their first non-trivial higher symmetries. We also
give Lax representations or linearization transformations for most of the equations. We show
that all the obtained equations can be treated as negative flows of integrable quasi-linear scalar
evolution equations of orders 2, 3 or 5. The classification results of the latter ones can be
found in [10].

2. Integrability test

In this section, we briefly recall the basic definitions and notations of the perturbative symmetry
approach (for details see [6, 12]). We also present the integrability test [6], which we apply to
isolate integrable generalizations of the Camassa–Holm equation.
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2.1. Symmetries and approximate symmetries

In what follows, we shall consider the Camassa–Holm-type equation (1) with the right- hand
side being a differential polynomial over C.

Let R be a ring of differential polynomials in u, ux, uxx, . . . over C. We shall adopt a
notation

ui ≡ Di
x(u).

We shall often omit subscript 0 at u0 and write u instead of u0.
The ring R is a differential ring with a derivation

Dx =
∑
i�0

ui+1
∂

∂ui

.

The ring has a natural gradation with respect to degrees of nonlinearity in u and its x-derivatives:

R =
⊕
i�0

Ri ,

Ri = {f (u, u1, . . . , uk) ∈ R|f (λu, λu1, . . . , λuk) = λif (u, u1, . . . , uk)}, λ ∈ C.

The space R0 = C,R1 is a space of linear polynomials in u, u1, . . . ,R2 is a space of quadratic
polynomials, etc. It is convenient to introduce a notion of ‘little oh’ as

f = o(Rp) ⇔ f ∈
⊕
i>p

Ri .

Let us denote by R+ a differential ring without a unit:

R+ =
⊕
i>0

Ri .

Suppose that F ∈ R+ in equation (1). We can formally rewrite equation (1) as an
evolutionary equation as

ut = �(F), � = (
1 − D2

x

)−1
. (2)

Symmetries and conservation laws of this equation, if they exist, may also contain operator
� in their structure and therefore we need an extension of the differential ring R+ with the
operator �. The construction of such extension was first suggested in [9] for the evolutionary
(2 + 1)-dimensional equations. For the Camassa–Holm-type equations it was first applied in
[6]. For example, let us construct a sequence of spaces Ri

+, i = 0, 1, 2, . . . , as follows:

R0
+ = R+, R1

+ = R0
+

⋃
�

(
R0

+

)
, Rn+1

+ = Rn
+

⋃
�

(
Rn

+

)
.

The subscript n in Rn
+ is the ‘nesting depth’ of the operator �. The extension construction is

compatible with the natural gradation:

Rn
+ =

⊕
i>0

Rn
i , Rn

i = {
f [u] ∈ Rn

+

∣∣ f [λu] = λif [u]
}
, λ ∈ C.

It is clear that �(F) in equation (2) belongs to R1
+. The symmetries of the equation may belong

to Rk
+ for some appropriate k � 0 and we introduce the following definition of a symmetry.

Definition 1. A function G ∈ Rk
+, k � 0, is called a generator of a symmetry of equation (2)

if a differential equation

uτ = G

is compatible with equation (2): Gt − Fτ = 0.

3
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We adopt the following definition of integrability.

Definition 2. Equation (2) is integrable if it possesses an infinite hierarchy of symmetries.

In addition to the definition of a symmetry we also introduce a definition of an approximate
symmetry.

Definition 3. A function G ∈ Rk
+, k � 0, is called a generator of an approximate symmetry

of degree p of equation (2) if Gt − Fτ = o
(
Rk

p

)
.

Any equation

ut = �(F) = �(F1) + �(F2) + · · · + �(Fk), Fk ∈ Rk,

possesses an infinite hierarchy of approximate symmetries of degree 1—these are symmetries
of its linear part ut = �(F1). The condition of existence of approximate symmetries of degree
2 imposes strong restrictions on the equation. However, an equation may possess infinitely
many of approximate symmetries of degree 2, but fail to possess approximate symmetries of
degree 3. On the other hand, an integrable equation possesses infinitely many approximate
symmetries of any degree. The degree of approximate symmetry can be viewed as a measure
of the integrability. In many cases, the existence of approximate symmetries of sufficiently
large degree implies integrability.

In order to derive the conditions of existence of symmetries and approximate symmetries,
it is convenient to introduce the symbolic representation of the ring R+ and its extension.

2.2. Symbolic representation

We start by introducing the symbolic representation R̂+ of R+. We first introduce the symbolic
representation of spaces Rk, k = 1, 2, . . ..

(1) To a linear monomial ui ∈ R1 we put into correspondence a symbol

ui −→ ûξ i
1.

(2) To a quadratic monomial uiuj ∈ R2 we put into correspondence a symbol

uiuj −→ û2

2

(
ξ i

1ξ
j

2 + ξ
j

1 ξ i
2

)
.

(3) We represent a generic u
n0
0 u

n1
1 · · · unk

k ∈ Rn, n = n0 + n1 + · · · + nk by a symbol

u
n0
0 u

n1
1 · · · unk

k −→ ûn
〈
ξ 0

1 · · · ξ 0
n0

ξ 1
n0+1 · · · ξ 1

n0+n1
· · · ξk

n

〉
,

where the brackets 〈∗〉 denote a symmetrization operation:

〈f (ξ1, . . . , ξn)〉 = 1

n!

∑
σ∈Sn

f (ξσ(1), . . . , ξσ(n)).

We define addition, multiplication and derivation as follows. Let f ∈ Ri and g ∈ Rj

be two monomials and their symbolic representation is given by f → ûia(ξ1, . . . , ξi) and
g → ûj b(ξ1, . . . , ξj ). Then

f + g −→ ûia(ξ1, . . . , ξi) + ûj b(ξ1, . . . , ξj )

and

f · g −→ ûi+j 〈a(ξ1, . . . , ξi)b(ξi+1, . . . , ξi+j )〉.
In particular, if i = j, then f + g → ûi (a(ξ1, . . . , ξi) + b(ξ1, . . . , ξi)).

4
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To a derivative of f → ûia(ξ1, . . . , ξi), we put into correspondence

Dx(f ) −→ ûia(ξ1, . . . , ξi)(ξ1 + · · · + ξi).

This concludes the construction of the symbolic representation R̂+ of the differential ring R+.
We also introduce a notion of a pseudo-differential formal series in the symbolic

representation. We reserve a special symbol η for the operator Dx in the symbolic
representation with an action rule

η(ûna(ξ1, . . . , ξn)) = ûna(ξ1, . . . , ξn)(ξ1 + · · · + ξn).

Let f D
p
x and gD

q
x , p, q ∈ Z, be two (pseudo)-differential operators and suppose that

f → ûia(ξ1, . . . , ξi) and g → ûj b(ξ1, . . . , ξj ). Then for the symbolic representation of
these operators we have

f Dp
x −→ ûia(ξ1, . . . , ξi)η

p, gDq
x −→ ûj b(ξ1, . . . , ξi)η

q.

For the addition and composition of pseudo-differential operators in the symbolic
representation we have

f Dp
x + gDq

x −→ ûia(ξ1, . . . , ξi)η
p + ûj b(ξ1, . . . , ξi)η

q,

f Dp
x ◦ gDq

x −→ ûi+j 〈a(ξ1, . . . , ξi)(η + ξi+1 + · · · + ξi+j )
pb(ξi+1, . . . , ξi+j )η

q〉.
More generally we shall consider formal series in the form

A = a0(η) + ûa1(ξ1, η) + û2a2(ξ1, ξ2, η) + û3a3(ξ1, ξ2, ξ3, η) + · · · , (3)

where functions ak(ξ1, . . . , ξk, η) are symmetric functions with respect to arguments
ξ1, . . . , ξk . The addition rule of such series is obvious, while for composition of two monomials
we have

ûia(ξ1, . . . , ξi, η) ◦ ûj b(ξ1, . . . , ξj , η)

= ûi+j 〈a(ξ1, . . . , ξi, η + ξi+1 + · · · + ξi+j )b(ξi+1, . . . , ξi+j , η)〉,
where the symmetrization operation is taken with respect to all arguments ξ1, . . . , ξi+j , but
not η.

We introduce a notion of locality of a pseudo-differential operator.

Definition 4. Function a(ξ1, . . . , ξi, η) is called local if all coefficients aj (ξ1, . . . , ξi) of its
expansion in η at η → ∞

a(ξ1, . . . , ξi, η) =
∑
j<s

aj (ξ1, . . . , ξi)η
j

are symmetric polynomials in variables ξ1, . . . , ξi . Formal series (3) is called local if all
functions aj (ξ1, . . . , ξj ), j = 1, 2, . . . , in (3) are local.

To construct the symbolic representation of the extension of the ring R+ with the operator
� = (

1 − D2
x

)−1
it is enough to note that the symbolic representation of the operator � is

� −→ (1 − η2)−1.

Indeed, if f ∈ Rk and f → ûka(ξ1, . . . , ξk), then

�(f ) −→ ûk a(ξ1, . . . , ξk)

1 − (ξ1 + · · · + ξk)2
.

Using if necessary the addition and multiplication operations we thus can obtain the symbolic
representation of any space Rj

+.

5



J. Phys. A: Math. Theor. 42 (2009) 342002 Fast Track Communication

In addition to the notion of locality of a pseudo-differential series we also introduce a
notion of quasi-locality.

Definition 5. A pseudo-differential operator

ûna(ξ1, . . . , ξn, η) =
∑
i<s

ûnai(ξ1, . . . , ξn)η
i

is called quasi-local if for all i < s, ûnai(ξ1, . . . , ξn) are symbolic representations of some
elements from Rk

n for some k � 0. A formal series (3) is called quasi-local if all its terms are
quasi-local.

Finally, we introduce a notion of a Frechet derivative in the symbolic representation: let
f ∈ Rn

k , k > 0, n � 0, and its symbolic representation is given by f → f̂ = ûka(ξ1, . . . , ξk).
Then the Frechet derivative f∗ corresponds to

f∗ → f̂ ∗ = kûk−1a(ξ1, . . . , ξk−1, η).

2.3. Symmetries and approximate symmetries in the symbolic representation

Now we derive conditions of existence of symmetries and approximate symmetries of
equation (2). We shall suppose that F ∈ R+ and thus we can rewrite equation (2) as

ut = �(F) = �(F1) + �(F2) + · · · + �(Fk), Fi ∈ Ri , i = 1, 2, . . . . (4)

We write the symbolic representation of �(F) as

�(F) −→ F̂ = ûω(ξ1) + û2a1(ξ1, ξ2) + · · · + ûkak−1(ξ1, . . . , ξk). (5)

By construction ai(ξ1, . . . , ξi+1), i = 1, . . . , k − 1, are symmetric rational functions in
ξ1, . . . , ξi+1 of the form

ai(ξ1, . . . , ξi+1) = bi(ξ1, . . . , ξi+1)

1 − (ξ1 + · · · + ξi+1)2
,

where symmetric polynomials bi(ξ1, . . . , ξi+1) are symbolic representations of differential
polynomials Fi+1, i = 1, 2, . . . , k − 1. Similarly ω(ξ1) = ω̃(ξ1)

/(
1 − ξ 2

1

)
and ω̃(ξ1) is a

symbolic representation of F1. We shall suppose that F1 is such that ω(ξ1) �= const ξ1.
Let G ∈ Rn

+, n � 0, be a symmetry of (4). Without loss of generality we can suppose
that

G = G1 + G2 + · · · + Gm, Gi ∈ Rn
i , i = 1, . . . , m.

Let

G −→ û
(ξ1) + û2A1(ξ1, ξ2) + · · · + ûmAm−1(ξ1, . . . , ξm) (6)

be a symbolic representation of G, i.e. ûiAi−1(ξ1, . . . , ξi), i = 1, . . . , m − 1, are symbolic
representations of Gi ∈ Rn

i and thus are symmetric rational functions in ξ1, . . . , ξi .
The following proposition holds.

Proposition 1. The function G ∈ Rn
+, n � 0, with the symbolic representation (6) is a

generator of a symmetry of equation (4) with the symbolic representation (5) if and only if

A1(ξ1, ξ2) = 
(ξ1 + ξ2) − 
(ξ1) − 
(ξ2)

ω(ξ1 + ξ2) − ω(ξ1) − ω(ξ2)
a1(ξ1, ξ2),

6
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Am(ξ1, . . . , ξm+1) = G
(ξ1, . . . , ξm+1)

Gω(ξ1, . . . , ξm+1)
am(ξ1, . . . , ξm+1)

+ Gω(ξ1, . . . , ξm+1)
−1·

[〈
m−1∑
j=1

m + 1

m − j + 1
Aj

(
ξ1, . . . , ξj ,

m+1∑
k=j+1

ξk

)
am−j (ξj+1, . . . , ξm+1)

−
m−1∑
j=1

m + 1

j + 1
am−j

(
ξ1, . . . , ξm−j ,

m+1∑
k=m−j+1

ξk

)
· Aj(ξm−j+1, . . . , ξm+1)

〉]
,

where

Gω(ξ1, . . . , ξm) = ω

(
m∑

n=1

ξn

)
−

m∑
n=1

ω(ξn),

G
(ξ1, . . . , ξm) = 


(
m∑

n=1

ξn

)
−

m∑
n=1


(ξn)

and ûiAi−1(ξ1, . . . , ξi−1) are symbolic representations of elements of Rn
i .

The proof follows from the compatibility conditions of equation (4) and uτ = G (for
details see [6]). Proposition 1 gives necessary and sufficient conditions of existence of an
approximate symmetry of degree p. Indeed, if for a given equation (4) with the symbolic
representation (5) ûiAi−1(ξ1, . . . , ξi) are symbolic representations of elements of Rn

i for all
i = 1, 2, . . . , p, then G is an approximate symmetry of degree p. Note that if G is a symmetry,
then it is completely determined by its linear part G1. From proposition 1 it follows that to
characterize a hierarchy of symmetries it is sufficient to characterize a hierarchy of admissible
linear terms.

However, it is possible to derive the necessary conditions of existence of an infinite
hierarchy of (approximate) symmetries without knowing the structure of admissible linear
terms of the symmetries. To do so we introduce a notion of a formal recursion operator.

Definition 6. A quasi-local formal series

� = φ(η) + ûφ1(ξ1, η) + û2φ2(ξ1, ξ2, η) + û3φ3(ξ1, ξ2, ξ3, η) + · · · (7)

is called a formal recursion operator for equation (4) if it satisfies

�t = F̂ ∗ ◦ � − � ◦ F̂ ∗, (8)

where F̂ ∗ is a symbolic representation of a Frechet derivative of F.

The following statement holds.

Theorem 2. If equation (4) possesses an infinite hierarchy of higher symmetries, then it
possesses a formal recursion operator (7) with φ(η) = η.

The proof of the theorem can be found in [6].
The equation �t = F̂ ∗◦�−�◦F̂ ∗ can be resolved in terms of functions φi(ξ1, . . . , ξi, η).

Proposition 2. Let φ(η) be an arbitrary function and formal series

� = φ(η) + ûφ1(ξ1, η) + û2φ2(ξ1, ξ2, η) + û3φ3(ξ1, ξ2, ξ3, η) + · · ·
7
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be a solution of equation (8); then its coefficients φm(ξ1, . . . , ξm, η) can be found recursively:

φ1(ξ1, η) = 2(φ(η + ξ1) − φ(η))

Gω(ξ1, η)
a1(ξ1, η),

φm(ξ1, . . . , ξm, η) = 1

Gω(ξ1, . . . , ξm, η)

(
(m + 1)(φ(η + ξ1 + · · · + ξm)

−φ(η))am(ξ1, . . . , ξm, η) +
m−1∑
n=1

〈
nφn(ξ1, . . . , ξn−1, ξn + · · · + ξm, η)am−n

× (ξn, . . . , ξm) + (m − n + 1)φn

(
ξ1, . . . , ξn, η +

m∑
l=n+1

ξl

)
am−n(ξn+1, . . . , ξm, η)

− (m − n + 1)am−n

(
ξn+1, . . . , ξm, η +

n∑
l=1

ξl

)
φn(ξ1, . . . , ξn, η)

〉)
.

The proof can be found in [6].
Theorem 2 and proposition 2 suggest the following integrability test for equation (4).

• Compute the symbolic representation of equation (4) and calculate the first few coefficients
φi(ξ1, . . . , ξi, η), i = 1, 2, . . ..

• Check the quasi-locality conditions.

In the following section we apply this test to isolate and classify integrable generalizations
of the Camassa–Holm equation.

3. Lists of generalized Camassa–Holm-type equations

In this section, we present the classification results of Camassa–Holm-type equations with
quadratic and cubic nonlinearity. We consider the following three ansätze for equation (4):(
1 − ε2D2

x

)
ut = c1uux + ε

[
c2uuxx + c3u

2
x

]
+ ε2 [c4uuxxx + c5uxuxx]

+ ε3 [
c6uuxxxx + c7uxuxxx + c8u

2
xx

]
+ ε4 [c9uuxxxxx + c10uxuxxxx + c11uxxuxxx] , (9)

(
1 − ε2D2

x

)
ut = c1u

2
x + εc2uxuxx + ε2

[
c3uxuxxx + c4u

2
xx

]
+ ε3[c5uxuxxxx + c6uxxuxxx]

+ ε4
[
c7uxuxxxxx + c8uxxuxxxx + c9u

2
xxx

]
(10)

and(
1 − ε2D2

x

)
ut = c1u

2ux + ε
[
c2u

2uxx + c3uu2
x

]
+ ε2

[
c4u

2uxxx + c5uuxuxx + c6u
3
x

]
+ ε3

[
c7u

2uxxxx + c8uuxuxxx + c9uu2
xx + c10u

2
xuxx

]
+ ε4

[
c11u

2uxxxxx + c12uuxuxxxx + c13uuxxuxxx + c14u
2
xuxxx + c15uxu

2
xx

]
. (11)

Here ε and ci are the complex parameters and ε �= 0. The right-hand sides of equations (9),
(10) and (11) are homogeneous differential polynomials of weights 1, 2 and 1, respectively,
if we assume that weight of ui is i, weight of ε equals −1 and weights of ut in (9), (10) and
(11) are 1, 2 and 1, respectively.

We bring equations (9)–(11) to the form (4) by shift transformation u → u + 1 in the
case of equations (9) and (11), and by u → u + x in the case of equation (10). We then
construct the corresponding symbolic representations and compute first three coefficients

8
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of the corresponding formal recursion operators using proposition 2. In each class we
then isolate the equations for which the first three coefficients of the corresponding formal
recursion operators are quasi-local—this is the necessary integrability condition according to
theorem 2. We then study the obtained equations in some details and present corresponding
higher symmetries, Lax representations or linearization transformations.

3.1. Equations with quadratic nonlinearity

Theorem 3. Suppose that at least one of the following equations is not satisfied:

c2 = 0, c6 = 0, c9 = 0, c1 + c4 = 0. (12)

Then if equation (9) possesses an infinite hierarchy of quasi-local higher symmetries, then up
to re-scaling x → αx, t → βt, u → γ u, α, β, γ = const, it is one of the list:(
1 − ε2D2

x

)
ut = 3uux − 2ε2uxuxx − ε2uuxxx, (13)(

1 − ε2D2
x

)
ut = Dx

(
4 − ε2D2

x

)
u2, (14)(

1 − ε2D2
x

)
ut = Dx

[(
4 − ε2D2

x

)
u
]2

, (15)(
1 − ε2D2

x

)
ut = Dx(2 + εDx) [(2 − εDx)u]2 , (16)(

1 − ε2D2
x

)
ut = Dx(2 − εDx)(1 + εDx)u

2, (17)(
1 − ε2D2

x

)
ut = Dx(2 − εDx) [(1 + εDx)u]2 , (18)(

1 − ε2D2
x

)
ut = Dx [(2 − εDx)(1 + εDx)u]2 , (19)(

1 − ε2D2
x

)
ut = Dx(1 + εDx) [(2 − εDx)u]2 , (20)(

1 − ε2D2
x

)
ut = (

1 − ε2D2
x

)(
εuuxx − 1

2εu2
x + cuux

)
, c ∈ C, (21)

(
1 − ε2D2

x

)
ut = (1 − εDx)

[
εS(u)S(uxx) − 1

2ε(S(ux))
2 − 1

2cS(u)S(ux)
]
, S = 1 + εDx.

(22)

We introduce a linear term into equation (9) by a shift u → u+1 and construct the symbolic
representation of the equation. The condition that at least one of the equations in (12) is not
satisfied insures that ω(ξ1) �= const ξ1 in the corresponding symbolic representations. To prove
the theorem it is sufficient to check the quasi-locality conditions of ûφ1(ξ1, η), û2φ2(ξ1, ξ2, η)

and û3φ3(ξ1, ξ2, ξ3, η) of the formal recursion operator:

� = η + ûφ1(ξ1, η) + û2φ2(ξ1, ξ2, η) + û3φ3(ξ1, ξ2, ξ3, η).

We do not present here the explicit formulae for these functions as they are quite cumbersome.
One can easily compute them using proposition 2.

Theorem 4. Suppose that at least one of the following equations is not satisfied:

c2 = 0, c5 = 0, c7 = 0, 2c1 + c3 = 0.

Then if equation (10) possesses an infinite hierarchy of quasi-local higher symmetries, then
up to re-scaling x → αx, t → βt, u → γ u, α, β, γ = const, it is one of the list:(

1 − ε2D2
x

)
ut = 1

2

(
3u2

x − 2ε2uxuxxx − ε2u2
xx

)
, (23)

9
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1 − ε2D2

x

)
ut = (

4 − ε2D2
x

)
u2

x, (24)(
1 − ε2D2

x

)
ut = [(

4 − ε2D2
x

)
ux

]2
, (25)(

1 − ε2D2
x

)
ut = (2 + εDx) [(2 − εDx)ux]2 , (26)(

1 − ε2D2
x

)
ut = (2 − εDx)(1 + εDx)u

2
x, (27)(

1 − ε2D2
x

)
ut = (2 − εDx) [(1 + εDx)ux]2 , (28)(

1 − ε2D2
x

)
ut = [(2 − εDx)(1 + εDx)ux]2 , (29)(

1 − ε2D2
x

)
ut = (1 + εDx) [(2 − εDx)ux]2 . (30)

We introduce a linear term by a shift u → u + x and then construct the symbolic
representation of equation (10). To prove the theorem it is again necessary to check the quasi-
locality conditions of the first three terms of the corresponding formal recursion operator.

Let us consider now some properties of equations (13)–(22) and (23)–(30).

Camassa–Holm equation (13). Equation (13) is the Camassa–Holm equation. It can be
rewritten as

mt = 2mux + umx, m = u − ε2uxx.

The Camassa–Holm equation possesses an infinite hierarchy of local higher symmetries and
the first non-trivial local symmetry is

uτ = Dx(u − ε2uxx)
− 1

2 .

The Lax representation and the bi-Hamiltonian structure can be found in [1, 4].

Degasperi–Procesi equation (14). Equation (14) is the Degasperis–Procesi equation and it
can be rewritten as

mt = 6mux + 2umx, m = (
1 − ε2D2

x

)
u.

The Degasperis–Procesi equation also possesses an infinite hierarchy of local higher
symmetries and the first such a non-trivial symmetry is

uτ = (
4 − ε2D2

x

)
Dx(u − ε2uxx)

− 2
3 .

The bi-Hamiltonian structure and the Lax representation for the Degasperis–Procesi
equation can be found in [5].

Equation (15). The first non-trivial symmetry of equation (15) is

uτ = Dx

[(
4 − ε2D2

x

) (
1 − ε2D2

x

)
u
]− 2

3 .

Equation (15) can be rewritten as

mt = Dx (m + 3u)2 , m = u − ε2uxx.

It is easy to see that the Degasperis–Procesi equation transforms into equation (15) under the
transformation

u → (
4 − ε2D2

x

)
u.

The Lax representation for equation (15) is

ψx − ψxxx − λ(4m − ε2mxx)ψ = 0,

ψt = 2

λ
ψxx + 2(m + 3u)ψx − 2

(
mx + 3ux +

2

3λ

)
ψ.

10
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Equation (16). The first non-trivial symmetry of equation (16) is

uτ = (2 + εDx)Dx[(2 − εDx)(u − ε2uxx)]
− 2

3 .

The Degasperis–Procesi equation transforms into (16) under the change of variables

u → (2 − εDx)u.

The Lax representation for equation (16) is

ψx − ψxxx − λ (2m − εmx)ψ = 0, m = u − ε2uxx,

ψt = 2

λ
ψxx + 2(2u − εux)ψx − 2

(
2ux − εuxx +

2

3λ

)
ψ.

Note that the other transformation u → (2 + εDx)u of Degasperis–Procesi gives the
equation

(
1 − ε2D2

x

)
ut = Dx(2 − εDx) [(2 + εDx)u]2, which transforms into (16) under the

change x → −x, t → −t .

Equation (17). Equation (17) possesses a hierarchy of local higher symmetries and the first
non-trivial one is

uτ = Dx [(1 − εDx)u]−1 .

The last equation is linearizable by the transformation

x = −ε log(vy(y, t)), u = 1√
ε log(v(y, t))y

, ⇒ vt = vyy.

Equation (18). The higher symmetries of this equation are quasi-local and the first non-trivial
one is

(1 + εDx)uτ = Dx

[(
1 − ε2D2

x

)
u
]−1

.

However, equation (18) can be rewritten as

mt = Dx(2 − εDx) [(1 + εDx)u]2 , m = u − ε2uxx

and the latter equation possesses an infinite hierarchy of local higher symmetries in dynamical
variable m. One can easily check that the first such a symmetry is

mτ = Dx(1 − εDx)m
−1.

The last equation is linearizable by the transformation

x = −ε log(v(y, t)), m = − 1√
ε log(v(y, t))y

, ⇒ vt = vyy.

Equations (17) and (18) are related by the transformation u → (1 + εDx)u. It is clear that
this transformation does not preserve the locality of higher symmetries of equation (17).

Equation (19). The first non-trivial higher symmetry of this equation is quasi-local

(1 + εDx)uτ = Dx[(2 − εDx)(u − ε2uxx)]
−2.

However equation (19) can be written as

mt = Dx[(2 − εDx)(1 + εDx)u]2, m = u − ε2uxx

and the latter equation possesses an infinite hierarchy of local higher symmetries and the first
one reads mτ = Dx(1 − εDx) [(2 − εDx)m]−2. The Lax representation for equation (19) is
not known yet.

Equation (20). The first non-trivial higher symmetry of equation (20) is

uτ = Dx [(2 − εDx)(1 − εDx)u]−2 .

11



J. Phys. A: Math. Theor. 42 (2009) 342002 Fast Track Communication

This equation possesses an infinite hierarchy of local higher symmetries. Note that
equation (19) can be obtained from (20) by the transformation u → (1 + εDx)u. The
Lax representation for this equation is not known yet.

Equation (21) is a local second-order linearizable evolutionary equation [10], while
equation (22) transforms into (21) as u → (1 + εDx)u.

Equations (23)–(30) can be obtained from equations (13)–(20) via the potentiation
transformation u → ux . Indeed, the right-hand side of each of equations (13)–(20) is a
total x-derivative, and therefore these equations admit a non-invertible transformation u = ûx .
For example, in the case of the Camassa–Holm equation (13) we have(
1 − ε2D2

x

)
ut = 3uux − 2ε2uxuxx − ε2uuxxx = Dx

(
3
2u2 − ε2uuxx − 1

2ε2u2
x

)
,

and therefore if u = ûx , then for û we obtain equation (23):(
1 − ε2D2

x

)
ût = (

3
2 û2

x − ε2ûx ûxxx − 1
2ε2û2

xx

)
.

3.2. Equations with cubic nonlinearity

Now we consider equations with cubic nonlinearity.

Theorem 5. Suppose that at least one of the following equations is not satisfied:

c2 = 0, c7 = 0, c11 = 0, c1 + c4 = 0.

Then if equation (11) possesses an infinite hierarchy of quasi-local higher symmetries, then
up to re-scaling x → αx, t → βt, u → γ u, α, β, γ = const, it is one of the list:(
1 − ε2D2

x

)
ut = ε2u2uxxx + 3ε2uuxuxx − 4u2ux, (31)(

1 − ε2D2
x

)
ut = Dx

(
ε2u2uxx − ε4u2

xuxx + ε2uu2
x − u3

)
, (32)

(
1 − ε2D2

x

)
ut = ε4u2

xuxxx + ε4uxu
2
xx + 2ε3uuxuxxx + ε3uu2

xx + ε3u2
xuxx

+ ε2u2uxxx − ε2u3
x − εu2uxx − 3εuu2

x − 2u2ux, (33)(
1 − ε2D2

x

)
ut = (1 + εDx)

(
εu2uxx + εuu2

x − 2u2ux

)
, (34)(

1 − ε2D2
x

)
ut = (1 + εDx)

(
2ε3u2

xuxx − ε2uuxuxx − ε2u3
x − εu2uxx − εuu2

x + 2u2ux

)
, (35)(

1 − ε2D2
x

)
ut = (

1 − ε2D2
x

)(
ε2u2uxxx − ε2uuxuxx + 4

9ε2u3
x + cu2ux

)
, c ∈ C, (36)(

1 − ε2D2
x

)
ut = (

1 − ε2D2
x

)(
ε2u2uxxx + ε2uuxuxx − 2

9ε2u3
x + cu2ux

)
, c ∈ C, (37)

(
1 − ε2D2

x

)
ut = (

1 − ε2D2
x

)(
ε2u2uxxx + ε2uuxuxx − 2

9ε2u3
x

+ 3cεu2uxx + cεuu2
x + 2c2u2ux

)
, c ∈ C, (38)

(
1 − ε2D2

x

)
ut = (

1 − ε2D2
x

) (
ε2u2uxxx + 1

9ε2u3
x + 3cεu2uxx + cεuu2

x + 2c2u2ux

)
,

c ∈ C, (39)(
1 − ε2D2

x

)
ut = (

1 − ε2D2
x

) (
εu2uxx + cu2ux

)
, c ∈ C. (40)

12
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We introduce a linear term into equation (11) by a shift transformation utou+1. The proof
requires to check the quasi-locality conditions of the first three terms of the formal recursion
operator.

Equation (31). The first local higher symmetry of this equation is

uτ = m− 13
3 ε2 (mmxxx − 5mxmxx) + 40

9 ε2m− 16
3 m3

x − 4m− 10
3 mx, m = u − ε2uxx.

Equation (31) can be rewritten as

mt = −(u2mx + 3muux), m = u − ε2uxx.

The Lax representation for equation (31) is

ε3ψxxx = εψx + λm2ψ + 2ε3 mx

m
ψxx +

mmxx − 2m2
x

m2
ψx,

ψt = ε

λ

u

m
ψxx − ε

λ

mux + umx

m2
ψx − u2ψx.

Equation (31) has been recently studied in detail in [7], where the Lax representation was
constructed in a different form. The authors of [7, 11] also obtained the bi-Hamiltonian
structure and constructed the peakon solutions for equation (31), for which the positions and
amplitudes of the peaks satisfy a finite-dimensional integrable Hamiltonian system.

Equation (32). The first local higher symmetry of equation (32) is

uτ = m−3mx, m = u − ε2uxx.

Equation (32) can be rewritten as

mt = (
ε2u2

x − u2
)
mx − 2m2ux.

This equation was recently derived from shallow water theory in [8], where the Lax
representation and bi-Hamiltonian structure were presented and different types of solutions
were constructed; however, an equivalent form of this equation was given by Fokas in [13].

Equation (33). The higher symmetries of this equation are quasi-local and the first one reads

(1 + εDx)uτ = m−7 (
εmmxx − 3εm2

x − 2mmx

)
, m = u − ε2uxx.

Equation (33) can be rewritten as

mt = −ε2u2
xmx − 2muux + m2ux − 2εuuxmx +

1

ε
mu(m − u) − εmu2

x − u2mx

and the latter equation possesses an infinite hierarchy of local higher symmetries in m. The
first such symmetry is

mτ = (1 − εDx)m
−7

(
εmmxx − 3εm2

x − 2mmx

)
, m = u − ε2uxx.

Equation (34). Equation (34) possesses an infinite hierarchy of local higher symmetries and
the first non-trivial one is

uτ = v−7
(
εvvxx − 3εv2

x − 2vvx

)
, v = u − εux.

Equation (35). The first local higher symmetry of this equation is

uτ = v−2(v + εvx)
−1 − v−3, v = u − εux.

The latter equation is linearizable as it is a second-order integrable evolution equation (cf
equations (17) and (18)).

Equations (37)–(40) correspond to local evolutionary equations of orders 3 and 2.
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4. Conclusions

In this article, we have considered polynomial homogeneous generalizations of the Camassa–
Holm-type equation with quadratic and cubic nonlinearity. We have classified all equations
of the form (9), (10) and (11), which possess infinite hierarchies of (quasi)-local higher
symmetries. We have shown that the obtained equations can be treated as non-local symmetries
of local scalar evolution quasi-linear integrable equations of orders 2, 3 and 5.

Some of the obtained equations seem to be new and are likely to provide more examples
of solution phenomena (peakons, compactons, other weak/non-classical solutions) that do not
appear in local evolution equations [14]. The study of multi-phase solutions of these equations
remains out of the scope of this paper.
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